Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Appl Spectrosc ; : 37028241243375, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567433

ABSTRACT

Lead-calcium phosphates are unusual compounds sometimes found in different kinds of cultural heritage objects. Structural and physicochemical properties of this family of materials, which fall into the hydroxypyromorphite-hydroxyapatite solid solution, or (PbxCa1-x)5(PO4)3OH, have received considerable attention during the last few decades for promising applications in different fields of environmental and material sciences, but their diagnostic implications in the cultural heritage context have been poorly explored. This paper aims to provide a clearer understanding of the relationship between compositional and structural properties of the peculiar series of (PbxCa1-x)5(PO4)3OH solid solutions and to determine key markers for their proper non-destructive and non-invasive identification in cultural heritage samples and objects. For this purpose, a systematic study of powders and paint mock-ups made up of commercial and in-house synthesized (PbxCa1-x)5(PO4)3OH compounds with a different Pb2+/Ca2+ ratio was carried out via a multi-technique approach based on scanning electron microscopy, synchrotron radiation-based X-ray techniques, i.e., X-ray powder diffraction and X-ray absorption near edge structure spectroscopy at the Ca K- and P K-edges, and vibrational spectroscopy methods, i.e., micro-Raman and Fourier transform infrared spectroscopy. The spectral modifications observed in the hydroxypyromorphite-hydroxyapatite solid solution series are discussed, by assessing the advantages and disadvantages of the proposed techniques and by providing reference data and optimized approaches for future non-destructive and non-invasive applications to study cultural heritage objects and samples.

2.
J Am Chem Soc ; 145(42): 23205-23213, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37818771

ABSTRACT

An exceptional microsample from the ground layer of Leonardo da Vinci's Mona Lisa was analyzed by high-angular resolution synchrotron X-ray diffraction and micro Fourier transform infrared spectroscopy, revealing a singular mixture of strongly saponified oil with high lead content and a cerussite (PbCO3)-depleted lead white pigment. The most remarkable signature in the sample is the presence of plumbonacrite (Pb5(CO3)3O(OH)2), a rare compound that is stable only in an alkaline environment. Leonardo probably endeavored to prepare a thick paint suitable for covering the wooden panel of the Mona Lisa by treating the oil with a high load of lead II oxide, PbO. The review of Leonardo's manuscripts (original and latter translation) to track the mention of PbO gives ambiguous information. Conversely, the analysis of fragments from the Last Supper confirms that not only PbO was part of Leonardo's palette, through the detection of both litharge (α-PbO) and massicot (ß-PbO) but also plumbonacrite and shannonite (Pb2OCO3), the latter phase being detected for the first time in a historical painting.

3.
Sci Rep ; 13(1): 4902, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36966150

ABSTRACT

This paper accounts for the diagnostic campaign aimed at understanding the phenomenon of black stains appeared on the passepartout close to the margins of Folio 843 of Leonardo da Vinci's Codex Atlanticus. Previous studies excluded microbiological deterioration processes. The study is based on a multi-analytical approach, including non-invasive imaging measurements of the folio, micro-imaging and synchrotron spectroscopy investigations of passepartout fragments at different magnifications and spectral ranges. Photoluminescence hyperspectral and lifetime imaging highlighted that black stains are not composed of fluorescent materials. µATR-FTIR imaging of fragments from the passepartout revealed the presence of a mixture of starch and PVAc glues localized only in the stained areas close to the margin of the folio. FE-SEM observations showed that the dark stains are localized inside cavities formed among cellulose fibers, where an accumulation of inorganic roundish particles (∅100-200 nm in diameter size), composed of Hg and S, was detected. Finally, by employing synchrotron µXRF, µXANES and HR-XRD analyses it was possible to identify these particles as metacinnabar (ß-HgS). Further research is needed to assess the chemical process leading to the metacinnabar formation in the controlled conservation condition of Leonardo's Codex.

4.
Angew Chem Int Ed Engl ; 62(16): e202216478, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36591906

ABSTRACT

The Night Watch, painted in 1642 and on view in the Rijksmuseum in Amsterdam, is considered Rembrandt's most famous work. X-ray powder diffraction (XRPD) mapping at multiple length scales revealed the unusual presence of lead(II) formate, Pb(HCOO)2 , in several areas of the painting. Until now, this compound was never reported in historical oil paints. In order to get insights into this phenomenon, one possible chemical pathway was explored thanks to the preparation and micro-analysis of model oil paint media prepared by heating linseed oil and lead(II) oxide (PbO) drier as described in 17th century recipes. Synchrotron radiation based micro-XRPD (SR-µ-XRPD) and infrared microscopy were combined to identify and map at the micro-scale various neo-formed lead-based compounds in these model samples. Both lead(II) formate and lead(II) formate hydroxide Pb(HCOO)(OH) were detected and mapped, providing new clues regarding the reactivity of lead driers in oil matrices in historical paintings.

5.
Microsc Microanal ; : 1-10, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35644640

ABSTRACT

The cultural heritage community is increasingly exploring synchrotron radiation (SR) based techniques for the study of art and archaeological objects. When considering heterogeneous and complex micro-samples, such as those from paintings, the combination of different SR X-ray techniques is often exploited to overcome the intrinsic limitations and sensitivity of the single technique. Less frequently, SR X-ray analyses are combined with SR micro-photoluminescence or micro-Fourier Transform Infrared spectroscopy, which provide complementary information on the molecular composition, offering a unique integrated analysis approach. Although the spatial correlation between the maps obtained with different techniques is not straightforward due to the different volumes probed by each method, the combination of the information provides a greater understanding and insight into the paint chemistry. In this work, we discuss the advantages and disadvantages of the combination of X-ray techniques and SR-based photoluminescence through the study of two paint micro-samples taken from Pablo Picasso's Femme (1907). The painting contains two cadmium yellow paints (based on CdS): one relatively intact and one visibly degraded. SR micro-analyses demonstrated that the two Cd-yellow paints differ in terms of structure, chemical composition, and photoluminescence properties. In particular, on the basis of the combination of different SR measurements, we hypothesize that the degraded yellow is based on nanocrystalline CdS with high presence of Cd(OH)Cl. These two characteristics have enhanced the reactivity of the paint and strongly influenced its stability.

6.
Molecules ; 27(6)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35335359

ABSTRACT

The European Synchrotron Radiation Facility (ESRF) has recently commissioned the new Extremely Brilliant Source (EBS). The gain in brightness as well as the continuous development of beamline instruments boosts the beamline performances, in particular in terms of accelerated data acquisition. This has motivated the development of new access modes as an alternative to standard proposals for access to beamtime, in particular via the "block allocation group" (BAG) mode. Here, we present the recently implemented "historical materials BAG": a community proposal giving to 10 European institutes the opportunity for guaranteed beamtime at two X-ray powder diffraction (XRPD) beamlines-ID13, for 2D high lateral resolution XRPD mapping, and ID22 for high angular resolution XRPD bulk analyses-with a particular focus on applications to cultural heritage. The capabilities offered by these instruments, the specific hardware and software developments to facilitate and speed-up data acquisition and data processing are detailed, and the first results from this new access are illustrated with recent applications to pigments, paintings, ceramics and wood.


Subject(s)
Software , Synchrotrons , Crystallography, X-Ray , X-Ray Diffraction
7.
J Synchrotron Radiat ; 28(Pt 6): 1996-2002, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34738955

ABSTRACT

Daiquiri is a web-based user interface (UI) framework for control system monitoring and data acquisition designed for synchrotron beamlines. It provides simple, intuitive and responsive interfaces to control and monitor hardware, launch acquisition sequences and manage associated metadata. Daiquiri concerns itself only with the UI layer; it does not provide a scan engine or controls system but can be easily integrated with existing systems.


Subject(s)
Software , Synchrotrons , Internet
8.
Anal Chem ; 93(33): 11557-11567, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34370456

ABSTRACT

This paper examines the production technology of Egyptian blue, an ancient artificial pigment, through the investigation of an unsuccessfully produced pellet derived from the Hellenistic production site of Kos (Dodecanese, Greece). This heterogeneous material was investigated by a combination of laboratory and synchrotron radiation-based (SR) techniques: scanning electron microscopy coupled with energy-dispersive X-ray spectrometry, micro-Raman spectroscopy, high-resolution SR micro-X-ray fluorescence spectroscopy, and SR micro-X-ray absorption near-edge structure spectroscopy (XANES), at the ID21 beamline of the European Synchrotron Radiation Facility. Principal component analysis of a large dataset of 171 micro-XANES spectra acquired on the archaeological samples and on a series of reference copper compounds emphasizes high variations of XANES features due to different speciation and also orientation effects, as demonstrated by the simulated XANES spectra. The results indicate that, rather than inadequate firing temperatures that could have led to the reddish cuprite (Cu2O), unsuccessful production may occur due to the use of inappropriate starting materials, which contain an unusually high iron content. The contextual interpretation underlines the intertwined relationship between the production of Egyptian blue and metallurgy.


Subject(s)
Copper , Synchrotrons , Copper/analysis , Greece , Silicates , X-Ray Absorption Spectroscopy
9.
Adv Sci (Weinh) ; 7(20): 2000412, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33101844

ABSTRACT

Metallic implants are frequently used in medicine to support and replace degenerated tissues. Implant loosening due to particle exposure remains a major cause for revision arthroplasty. The exact role of metal debris in sterile peri-implant inflammation is controversial, as it remains unclear whether and how metals chemically alter and potentially accumulate behind an insulating peri-implant membrane, in the adjacent bone and bone marrow (BM). An intensively focused and bright synchrotron X-ray beam allows for spatially resolving the multi-elemental composition of peri-implant tissues from patients undergoing revision surgery. In peri-implant BM, particulate cobalt (Co) is exclusively co-localized with chromium (Cr), non-particulate Cr accumulates in the BM matrix. Particles consisting of Co and Cr contain less Co than bulk alloy, which indicates a pronounced dissolution capacity. Particulate titanium (Ti) is abundant in the BM and analyzed Ti nanoparticles predominantly consist of titanium dioxide in the anatase crystal phase. Co and Cr but not Ti integrate into peri-implant bone trabeculae. The characteristic of Cr to accumulate in the intertrabecular matrix and trabecular bone is reproducible in a human 3D in vitro model. This study illustrates the importance of updating the view on long-term consequences of biomaterial usage and reveals toxicokinetics within highly sensitive organs.

10.
Proc Natl Acad Sci U S A ; 117(45): 27825-27835, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33106396

ABSTRACT

A hitherto unknown composition is highlighted in the red and black inks preserved on ancient Egyptian papyri from the Roman period (circa 100 to 200 CE). Synchrotron-based macro-X-ray fluorescence (XRF) mapping brings to light the presence of iron (Fe) and lead (Pb) compounds in the majority of the red inks inscribed on 12 papyrus fragments from the Tebtunis temple library. The iron-based compounds in the inks can be assigned to ocher, notably due to the colocalization of Fe with aluminum, and the detection of hematite (Fe2O3) by micro-X-ray diffraction. Using the same techniques together with micro-Fourier transform infrared spectroscopy, Pb is shown to be associated with fatty acid phosphate, sulfate, chloride, and carboxylate ions. Moreover, micro-XRF maps reveal a peculiar distribution and colocalization of Pb, phosphorus (P), and sulfur (S), which are present at the micrometric scale resembling diffused "coffee rings" surrounding the ocher particles imbedded in the red letters, and at the submicrometric scale concentrated in the papyrus cell walls. A similar Pb, P, and S composition was found in three black inks, suggesting that the same lead components were employed in the manufacture of carbon-based inks. Bearing in mind that pigments such as red lead (Pb3O4) and lead white (hydrocerussite [Pb3(CO3)2(OH)2] and/or cerussite [PbCO3]) were not detected, the results presented here suggest that the lead compound in the ink was used as a drier rather than as a pigment. Accordingly, the study calls for a reassessment of the composition of lead-based components in ancient Mediterranean pigments.

11.
Sci Rep ; 10(1): 14337, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32868823

ABSTRACT

In Heritage Science, the evaluation of stone consolidation treatments by investigating the nature of in situ newly formed products and their penetration depth within the consolidated matrix is a grand challenge. A number of analytical methods have been proposed, but, currently, most of them are not able to supply a full overview of the spatial, structural and compositional information of the newly formed crystalline and amorphous phases with a submicrometric lateral resolution. Here, we examined, the capabilities of synchrotron radiation (SR)-based two-dimensional X-ray absorption near-edge structure (2D-XANES) spectroscopy at Ca K-edge for determining the structural and compositional properties of the compounds formed after the application of a calcium acetoacetate-based consolidant on a porous carbonatic stone (limestone) and for investigating their stratigraphic distribution at the submicrometric scale length. We evaluated advantages and drawbacks of three Ca K-edge 2D-XANES-based approaches: (i) transmission mode full-field-XANES (FF-XANES) imaging; (ii) micro-X-ray fluorescence (µ-XRF) mapping above the Ca K-edge combined with the acquisition of XRF mode µ-XANES spectra at a limited number of spots; (iii) full-spectral µ-XANES (FS µ-XANES) mapping in XRF mode and its variant called selectively induced X-ray emission spectroscopy (SIXES) mapping. Overall, Ca K-edge 2D-XANES spectroscopy provided accurate qualitative and semi-quantitative information on the newly formed calcium carbonates (i.e., amorphous calcium carbonate, vaterite and calcite) and their stratigraphic distribution at the submicrometric scale, thus opening a new scenario to study the carbonatation process of calcium-based consolidants in limestones.

12.
Anal Chem ; 92(20): 14164-14173, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32955250

ABSTRACT

Synchrotron radiation (SR)-based X-ray methods are powerful analytical tools for several purposes. They are widely used to probe the degradation mechanisms of inorganic artists' pigments in paintings, including chrome yellows (PbCr1-xSxO4; 0 ≤ x ≤ 0.8), a class of compounds often found in Van Gogh masterpieces. However, the high intensity and brightness of SR beams raise important issues regarding the potential damage inflicted on the analyzed samples. A thorough knowledge of the SR X-ray sensitivity of each class of pigment in the painting matrix is therefore required to find analytical strategies that seek to minimize the damage for preserving the integrity of the analyzed samples and to avoid data misinterpretation. Here, we employ a combination of Cr K-edge X-ray absorption near-edge structure spectroscopy, Cr-Kß X-ray emission spectroscopy, and X-ray diffraction to monitor and quantify the effects of SR X-rays on the stability of chrome yellows and related Cr compounds and to define mitigation strategies. We found that the SR X-ray beam exposure induces changes in the oxidation state and local coordination environment of Cr ions and leads to a loss of the compound's crystalline structure. The extent of X-ray damage depends on some intrinsic properties of the samples (chemical composition of the pigment and the presence/absence and nature of the binder). It can be minimized by optimizing the overall fluence/dose released to the samples and by working in vacuum and under cryogenic conditions.

13.
Sci Adv ; 6(18): eaay8782, 2020 May.
Article in English | MEDLINE | ID: mdl-32494666

ABSTRACT

Ultramarine blue pigment, one of the most valued natural artist's pigments, historically was prepared from lapis lazuli rock following various treatments; however, little is understood about why or how to distinguish such a posteriori on paintings. X-ray absorption near-edge structure spectroscopy at the sulfur K-edge in microbeam and full-field modes (analyzed with nonnegative matrix factorization) is used to monitor the changes in the sulfur species within lazurite following one such historically relevant treatment: heating of lapis lazuli before extracting lazurite. Sulfur signatures in lazurite show dependence on the heat treatment of lapis lazuli from which it is derived. Peaks attributed to contributions from the trisulfur radical-responsible for the blue color of lazurite-increase in relative intensity with heat treatment paralleled by an intensified blue hue. Matching spectra were identified on lazurite particles from five historical paint samples, providing a marker for artists' pigments that had been extracted from heat-treated lapis lazuli.

14.
Sci Adv ; 6(20): eaay3514, 2020 May.
Article in English | MEDLINE | ID: mdl-32440540

ABSTRACT

The degradation of cadmium sulfide (CdS)-based oil paints is a phenomenon potentially threatening the iconic painting The Scream (ca. 1910) by Edvard Munch (Munch Museum, Oslo) that is still poorly understood. Here, we provide evidence for the presence of cadmium sulfate and sulfites as alteration products of the original CdS-based paint and explore the external circumstances and internal factors causing this transformation. Macroscale in situ noninvasive spectroscopy studies of the painting in combination with synchrotron-radiation x-ray microspectroscopy investigations of a microsample and artificially aged mock-ups show that moisture and mobile chlorine compounds are key factors for promoting the oxidation of CdS, while light (photodegradation) plays a less important role. Furthermore, under exposure to humidity, parallel/secondary reactions involving dissolution, migration through the paint, and recrystallization of water-soluble phases of the paint are associated with the formation of cadmium sulfates.

15.
Chemistry ; 26(8): 1703-1719, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-31609033

ABSTRACT

X-ray diffraction (XRD) mapping consists in the acquisition of XRD patterns at each pixel (or voxel) of an area (or volume). The spatial resolution ranges from the micrometer (µXRD) to the millimeter (MA-XRD) scale, making the technique relevant for tiny samples up to large objects. Although XRD is primarily used for the identification of different materials in (complex) mixtures, additional information regarding the crystallite size, their orientation, and their in-depth distribution can also be obtained. Through mapping, these different types of information can be located on the studied sample/object. Cultural heritage objects are usually highly heterogeneous, and contain both original and later (degradation, conservation) materials. Their structural characterization is required both to determine ancient manufacturing processes and to evaluate their conservation state. Together with other mapping techniques, XRD mapping is increasingly used for these purposes. Here, the authors review applications as well as the various configurations for XRD mapping (synchrotron/laboratory X-ray source, poly-/monochromatic beam, micro/macro beam, 2D/3D, transmission/reflection mode). On-going hardware and software developments will further establish the technique as a key tool in heritage science.

16.
Part Fibre Toxicol ; 16(1): 33, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31451117

ABSTRACT

BACKGROUND: Allergic reactions to tattoos are amongst the most common side effects occurring with this permanent deposition of pigments into the dermal skin layer. The characterization of such pigments and their distribution has been investigated in recent decades. The health impact of tattoo equipment on the extensive number of people with inked skin has been the focus of neither research nor medical diagnostics. Although tattoo needles contain high amounts of sensitizing elements like nickel (Ni) and chromium (Cr), their influence on metal deposition in skin has never been investigated. RESULTS: Here, we report the deposition of nano- and micrometer sized tattoo needle wear particles in human skin that translocate to lymph nodes. Usually tattoo needles contain nickel (6-8%) and chromium (15-20%) both of which prompt a high rate of sensitization in the general population. As verified in pig skin, wear significantly increased upon tattooing with the suspected abrasive titanium dioxide white when compared to carbon black pigment. Additionally, scanning electron microscopy of the tattoo needle revealed a high wear after tattooing with ink containing titanium dioxide. The investigation of a skin biopsy obtained from a nickel sensitized patient with type IV allergy toward a tattoo showed both wear particles and iron pigments contaminated with nickel. CONCLUSION: Previously, the virtually inevitable nickel contamination of iron pigments was suspected to be responsible for nickel-driven tattoo allergies. The evidence from our study clearly points to an additional entry of nickel to both skin and lymph nodes originating from tattoo needle wear with an as yet to be assessed impact on tattoo allergy formation and systemic sensitization.


Subject(s)
Chromium/pharmacokinetics , Coloring Agents/toxicity , Hypersensitivity/etiology , Lymph Nodes/drug effects , Nickel/pharmacokinetics , Skin/drug effects , Tattooing/adverse effects , Animals , Coloring Agents/pharmacokinetics , Humans , Hypersensitivity/immunology , Hypersensitivity/metabolism , In Vitro Techniques , Ink , Lymph Nodes/immunology , Lymph Nodes/metabolism , Nanoparticles/metabolism , Nanoparticles/toxicity , Needles , Particle Size , Skin/immunology , Skin/metabolism , Swine , Tissue Distribution , Titanium/pharmacokinetics , Titanium/toxicity
17.
Invest Radiol ; 54(10): 617-626, 2019 10.
Article in English | MEDLINE | ID: mdl-31033673

ABSTRACT

OBJECTIVES: The aim of this study was to determine in vivo if brain inflammation leads to increased gadolinium (Gd) retention in brain tissue after repeated applications of Gd-based contrast agents (GBCAs). MATERIALS AND METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced in female SJL/J mice (n = 6). Experimental autoimmune encephalomyelitis and healthy control mice (n = 4) received 2.5 mmol/kg Gd-DTPA over 10 days (8 injections, cumulated dose of 20 mmol/kg), starting at day 14 post immunization when EAE mice reached the maximal clinical disability. In a group of mice, T1-weighted 2-dimensional RARE images were acquired before the first GBCA injection and 1 day after the last injection. Mice were killed either 1 day or 10 days after the last Gd application. From each single animal, a brain hemisphere was used for Gd detection using inductively coupled plasma mass spectrometry, whereas the other hemisphere was processed for histology and synchrotron x-ray fluorescence spectroscopy (SR-XRF) analysis. RESULTS: Gadolinium deposition in inflamed brains was mapped by SR-XRF 1 day after the last Gd-DTPA injections, although only mild signal hyperintensity was found on unenhanced T1-weighted images. In addition, using inductively coupled plasma mass spectrometry, we detected and quantified Gd in both healthy and EAE brains up to 10 days after the last injections. However, EAE mouse brains showed higher levels of Gd (mean ± SD, 5.3 ± 1.8 µg/g; range, 4.45-8.03 µg/g) with respect to healthy controls (mean ± SD, 2.4 ± 0.6 µg/g; range, 1.8-3.2 µg/g). By means of micro-SR-XRF, we identified submicrometric Gd hotspots in all investigated samples containing up to 5893 µg Gd/g tissue. Nano-SR-XRF further indicated that Gd small hotspots had an average size of ~160 nm diameter and were located in areas of high inflammatory activity. CONCLUSIONS: After repeated administrations of Gd-DTPA, ongoing inflammation may facilitate the retention of Gd in the brain tissue. Thus, neuroinflammation should be considered as a risk factor in the recommendation on use of linear GBCA-enhanced MRI.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Contrast Media/pharmacokinetics , Gadolinium DTPA/pharmacokinetics , Animals , Contrast Media/administration & dosage , Female , Gadolinium DTPA/administration & dosage , Male , Mice , Models, Animal , Spectrometry, Fluorescence , Spectrophotometry, Atomic
18.
Protoplasma ; 256(4): 1025-1035, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30834984

ABSTRACT

Sulfur (S) and phosphorus (P) are essential elements for plant growth and physiological functioning. Their deficiency can limit N2 fixation and nodule development in nodulated legumes. The location of S within nodule tissues could provide insights into S metabolism and its little-known relationship with N2 fixation. Determinate and indeterminate nodules were inoculated with specific rhizobia and grown hydroaeroponically under sufficient versus deficient P supplies. Cryogenic and freeze-dried thin sections of nodules at the flowering stage were mapped using synchrotron micro-X-ray fluorescence to determine the S distribution within the nodule tissues with a spatial resolution of 2 or 3 µm. A large accumulation of S was found in the middle cortex for both types of nodules. S was also found in all of the other tissues but with a significantly lower signal. In the middle cortex, P deficiency decreased the S maximum fluorescence intensity by 20% and 25% for the determinate and indeterminate nodules, respectively. In addition, Mg and Cl maps were also collected showing that Mg was mostly localized in the middle and inner cortex, forming a Mg-rich ring consisting of several cell layers for the determinate nodules compared with only one cell layer for the indeterminate nodules. Cl was mainly accumulated in the outer cortex. It is concluded that the accumulation of S in the middle cortex is consistent with its involvement in the ionic equilibrium of the nodule, and in the osmotic variation of the inner cortex cell-size, which would regulate nodule permeability to oxygen.


Subject(s)
Root Nodules, Plant/metabolism , Spectrometry, X-Ray Emission/methods , Sulfur/metabolism , Vigna/metabolism , Chlorides/metabolism , Flowers/metabolism , Magnesium/metabolism , Nitrogen Fixation , Phosphorus/metabolism , Synchrotrons
19.
Biomed Opt Express ; 10(1): 18-28, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30775080

ABSTRACT

For biomedical research, successful imaging of calcified microstructures often relies on absorption differences between features, or on employing dies with selective affinity to areas of interest. When texture is concerned, e.g. for crystal orientation studies, polarization induced contrast is of particular interest. This requires sufficient interaction of the incoming radiation with the volume of interest in the sample to produce orientation-based contrast. Here we demonstrate polarization induced contrast at the calcium K-edge using submicron sized monochromatic synchrotron X-ray beams. We exploit the orientation dependent subtle absorption differences of hydroxyl-apatite crystals in teeth, with respect to the polarization field of the beam. Interaction occurs with the fully mineralized samples, such that differences in density do not contribute to the contrast. Our results show how polarization induced contrast X-ray fluorescence mapping at specific energies of the calcium K-edge reveals the micrometer and submicrometer crystal arrangements in human tooth tissues. This facilitates combining both high spatial resolution and large fields of view, achieved in relatively short acquisition times in reflection geometry. In enamel we observe the varying crystal orientations of the micron sized prisms exposed on our prepared surface. We easily reproduce crystal orientation maps, typically observed in polished thin sections. We even reveal maps of submicrometer mineralization fronts in spherulites in intertubular dentine. This Ca K-edge polarization sensitive method (XRF-PIC) does not require thin samples for transmission nor extensive sample preparation. It can be used on both fresh, moist samples as well as fossilized samples where the information of interests lies in the crystal orientations and where the crystalline domains extend several micrometers beneath the exposed surface.

20.
Angew Chem Int Ed Engl ; 58(17): 5619-5622, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30614602

ABSTRACT

Rembrandt (1606-1669) is renowned for his impasto technique, involving his use of lead white paint with outstanding rheological properties. This paint was obtained by combining lead white pigment (a mixture of cerussite PbCO3 and hydrocerussite Pb3 (CO3 )2 (OH)2 ) with an organic binding medium, but the exact formulation used by Rembrandt remains a mystery. A powerful combination of high-angle and high-lateral resolution x-ray diffraction was used to investigate several microscopic paint samples from four Rembrandt masterpieces. A rare lead compound, plumbonacrite (Pb5 (CO3 )3 O(OH)2 ), was detected in areas of impasto. This can be considered a fingerprint of Rembrandt's recipe and is evidence of the use of an alkaline binding medium, which sheds a new light on Rembrandt's pictorial technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...